Найдено 398 результатов

romanov59
Вс июн 03, 2018 16:19
Форум: Оффтопик
Тема: Два центра одной сферы...
Ответы: 0
Просмотры: 367

Re: Два центра одной сферы...

Конечно легче считать, что фронт сферы не зависит от центра или центров и распространяется и во времени t и во времени t'.  А равноправие... ну что равноправие во время t центр один а другого нет, также во время t'  и тогда наверняка центр у сферы один. С этим ведь никто не спорит?
romanov59
Вс июн 03, 2018 16:19
Форум: Оффтопик
Тема: Два центра одной сферы...
Ответы: 10
Просмотры: 1141

Re: Два центра одной сферы...

Конечно легче считать, что фронт сферы не зависит от центра или центров и распространяется и во времени t и во времени t'.  А равноправие... ну что равноправие во время t центр один а другого нет, также во время t'  и тогда наверняка центр у сферы один. С этим ведь никто не спорит?
romanov59
Вс июн 03, 2018 12:57
Форум: Дискуссионный клуб / Debating-Society
Тема: Научная кунсткамера/Scientific curiosities
Ответы: 6933
Просмотры: 1744216

Два центра одной сферы...

При двух системах отсчета, считать свою всегда в центре одной сферы, а у сферы один центр и это многовековые опытные данные и никогда не рассматривать не в центре при одинаковых результатах и так более ста лет - это... А ведь при рассмотрении при помощи векторов это задача в пределах школьной програ...
romanov59
Вс июн 03, 2018 12:57
Форум: Оффтопик
Тема: Два центра одной сферы...
Ответы: 10
Просмотры: 1141

Два центра одной сферы...

При двух системах отсчета, считать свою всегда в центре одной сферы, а у сферы один центр и это многовековые опытные данные и никогда не рассматривать не в центре при одинаковых результатах и так более ста лет - это... А ведь при рассмотрении при помощи векторов это задача в пределах школьной програ...
romanov59
Вт май 15, 2018 11:28
Форум: Оффтопик
Тема: Поживем увидим ...
Ответы: 2
Просмотры: 500

Re: Поживем увидим ...

По постулату равноправия если в одной системе есть центр. то и в другой должен быть. Но механизм равноправия может быть другим. Так в одной системе от центра до точек сферы скорость с , перемещение ct, между началами систем скорость v, перемещение vt, от начала другой системы скорость (c-v) перемеще...
romanov59
Пт май 11, 2018 15:52
Форум: Оффтопик
Тема: Поживем увидим ...
Ответы: 2
Просмотры: 500

Re: Поживем увидим ...

При двух системах отсчета, считать свою всегда в центре одной сферы, а у сферы один центр и это многовековые опытные данные и никогда не рассматривать не в центре при одинаковых результатах и так более ста лет - это... А ведь при рассмотрении при помощи векторов это задача в пределах школьной програ...
romanov59
Вт мар 20, 2018 17:16
Форум: Оффтопик
Тема: Поживем увидим ...
Ответы: 2
Просмотры: 500

Поживем увидим ...

Обратимся к лучшему выводу, учебник Савельева. Перемножив оба соотношения, придём к уравнению c 2 = k 2 ( c 2 - v 2 ). Распишем для общего случая | ( c- v) | |( c+ v)| cos a Почему cos a всегда равен 1? Здесь гамма заменён на к. В остальном и рассуждения и вывод безупречны, но для частного случая. Д...
romanov59
Чт фев 22, 2018 8:57
Форум: Оффтопик
Тема: Задача на логику.
Ответы: 2
Просмотры: 498

Re: Задача на логику.

Так какое положение не верное 2 или 3 ведь они равноправны, отражают опытные факты. Постоянство скорости света показывает, что если в одной системе отсчета есть центр сферы, то и в другой системе должен быть центр ведь системы равноправны и значит это противоречит , что центр сферы один.
romanov59
Вс фев 18, 2018 14:10
Форум: Оффтопик
Тема: это как
Ответы: 24
Просмотры: 2765

Re: это как

Судя по всему |( c - v ) ( c + v ) |представляется как нечто единое целое и тогда углы между частями этого целого учитывать не надо. Но если представить | ( c - v ) | и | ( c + v ) | как два отдельных компонента то угол надо учитывать т. к. произведение двух величин это не произведение внутри одной ...
romanov59
Пт фев 16, 2018 11:00
Форум: Оффтопик
Тема: это как
Ответы: 24
Просмотры: 2765

Re: это как

В качестве примера рассмотрим частный случай параллелограмма в виде ромба АВСD, |AB|=|CD|=|с|=6 м угол острый а=60 cos 60 = 1/2, |BC| =|AD|=|v|=6м угол тупой в=120 cos 120 = - 1/2. Покажем что длину диагоналей по 6м и произведение равно 36, а при раскрытии скобок это произведение равно 0. По теореме...
romanov59
Ср фев 14, 2018 11:49
Форум: Оффтопик
Тема: Задача на логику.
Ответы: 2
Просмотры: 498

Задача на логику.

Рассмотрим 4 положения. 1. Постулат равноправия, все процессы в инерциальный системах одинаковы. 2. Постоянство скорости света, а значит центр сферы есть и в одной системе и в другой. Только тогда от центров до точек сферы и расстояние ct и ct'. 3. Центр у сферы один и это опытные данные. 4. Постоян...
romanov59
Ср фев 14, 2018 6:51
Форум: Оффтопик
Тема: это как
Ответы: 24
Просмотры: 2765

Re: это как

Возможно,что есть нахождение диагоналей по двум сторонам и углу, а вот отметить что произведение диагоналей равно разности квадратов сторон забыли. Или проблема в раскрытии скобок ( c+v ) (c -v)=c 2 . - v 2 ? Так как при представлении ( c+v) (c-v) через стороны и угол по теореме косинусов результат ...
romanov59
Вт фев 13, 2018 16:09
Форум: Оффтопик
Тема: это как
Ответы: 24
Просмотры: 2765

Re: это как

Если учесть, что ( c+ v ) длинная диагональ параллелограмма, а ( c - v } - короткая, а стороны это с и v то результат будет из теоремы косинусов ( c + v) 2 = ( c 2 + v 2 + 2 c v cos a), ( c - v ) 2 = ( c 2 + v 2 - 2 c v cos a). Перемножив и извлекя квадратный корень получим c 2 + v 2 - 2 c v cosa. А...
romanov59
Вт фев 13, 2018 7:09
Форум: Оффтопик
Тема: это как
Ответы: 24
Просмотры: 2765

Re: это как

Обратимся к лучшему выводу, учебник Савельева. Перемножив оба соотношения, придём к уравнению c2= k2 ( c 2 - v2 ). Распишем для общего случая | ( c- v) | |( c+ v)| cos a Почему cos a всегда равен 1? Здесь гамма заменён на к. В остальном и рассуждения и вывод безупречны, но для частного случая.
romanov59
Вс фев 11, 2018 18:04
Форум: Оффтопик
Тема: это как
Ответы: 24
Просмотры: 2765

Re: это как

Отвечаю и прошу не надо как реклама воспринимать. Пионерские вопросы задаю на форуме СПб свободная тема. Охваченные безумством разрушения... Кто они?
Там вопросиков побольше. Разговор за жизнь это там. А за физику здесь темы под моим ником.

Перейти к расширенному поиску