Сверхпроводимость, БКШ, успехи, странности и непонятности

Модераторы: morozov, mike@in-russia, Editor

FENIMUS
Сообщения: 984
Зарегистрирован: Пн мар 31, 2008 11:57
Контактная информация:

Re: ВТСП. Тема не сдохла, но затихла

Номер сообщения:#91   FENIMUS » Чт дек 20, 2018 10:24

Гидрид лантана сверхпроводимый при -23 С и давлении 150 ГПа.

https://www.dailytechinfo.org/news/1044 ... mosti.html

Аватара пользователя
morozov
Сообщения: 32836
Зарегистрирован: Вт май 17, 2005 18:44
Откуда: с Уралу
Контактная информация:

Re: Сверхпроводимость, БКШ, успехи, странности и непонятности

Номер сообщения:#92   morozov » Чт дек 20, 2018 16:26

Magnetic-Field-Induced Superconductivity in Ultrathin Pb Films with Magnetic Impurities
Masato Niwata, Ryuichi Masutomi, Tohru Okamoto
(Submitted on 23 Oct 2017)

It is well known that external magnetic fields and magnetic moments of impurities both suppress superconductivity. Here, we demonstrate that their combined effect enhances the superconductivity of a few atomic layer thick Pb films grown on a cleaved GaAs(110) surface. A Ce-doped film, where superconductivity is totally suppressed at zero-field, actually turns superconducting when an external magnetic field is applied parallel to the conducting plane. For films with Mn adatoms, the screening of the magnetic moment by conduction electrons, i.e., the Kondo singlet formation, becomes important. We found that the degree of screening can be reduced by capping the Pb film with a Au layer, and observed the positive magnetic field dependence of the superconducting transition temperature.

Comments: 5 pages, 3 figures, submitted to PRL
Subjects: Superconductivity (cond-mat.supr-con)
Cite as: arXiv:1710.08210 [cond-mat.supr-con]
(or arXiv:1710.08210v1 [cond-mat.supr-con] for this version)

http://xxx.lanl.gov/pdf/1710.08210v1
С уважением, Морозов Валерий Борисович

Аватара пользователя
morozov
Сообщения: 32836
Зарегистрирован: Вт май 17, 2005 18:44
Откуда: с Уралу
Контактная информация:

Re: Сверхпроводимость, БКШ, успехи, странности и непонятности

Номер сообщения:#93   morozov » Ср окт 09, 2019 23:56

Ещё один шаг к “жаропрочной” сверхпроводимости

После открытия в 1986 г. Беднорцем и Мюллером "высокотемпературной" сверхпроводимости в купратах, за которое им уже в следующем году была присуждена Нобелевская премия, не прекращались попытки всё более и более повысить температуру сверхпроводящего перехода Tc. Напомним, что сами Беднорц и Мюллер обнаружили сверхпроводимость с Tc около 30 К. За прошедшие после этого три десятилетия было открыто множество разнообразных высокотемпературных сверхпроводников, и Tc удалось поднять более, чем на сотню градусов, но “комнатнотемпературная” сверхпроводимость оставалась недостижимой. Особые надежды тут возлагались на гидриды. Основным “действующим лицом” в них является водород, для которого благодаря его малой массе характерны высокие фононные частоты, а также сильное электрон-фононное взаимодействие.

Важным успехом на этом пути было обнаружение сверхпроводимости в сероводороде с Tc = 203 К при давлении 150 ГПа [1]. При таком сверхвысоком давлении в сероводороде (H2S) возникает фаза H3S с возросшим числом атомов водорода в расчёте на формульную единицу. В 2017 г. было теоретически предсказано, что гидриды лантана и иттрия с ещё большим содержанием водорода могут обеспечить дальнейшее повышение Tc [2, 3]. Например, гидрид LaH10 имеет так называемую клатратную структуру, в которой каждый атом лантана находится в “клетке” из 10 атомов водорода. Эти предсказания были недавно подтверждены на эксперименте. Так, сразу две экспериментальные группы сообщили, что при давлениях от 120 до 185 ГПа Tc у LaH10 лежит в интервале 250-260 К [4,5], у YH6 наблюдалась Tc = 224 K при 166 ГПа [6].

Но и теоретики не стоят на месте. Так, исследователи из Jilin Univ. (Китай) [7] взялись уже за тройные соединения. Гидридов, содержащих три, а не два, химических элемента, великое множество, а их возможных структурных конфигураций ещё больше, но далеко не все они оказываются устойчивыми. Авторы работы [7] выявили во всём этом многообразии весьма перспективное соединение Li2MgH16, имеющее сложную клатратную структуру (рис. 1). Здесь литий служит в качестве источника дополнительных электронов, которые предотвращают формирование молекул H2 в такой структуре, способствуя сверхпроводимости.
Изображение
Рис. 1. Структура кристалла Li2MgH16 при высоких давлениях, включающая в себя “клетки” H18 вокруг Li и H28 - вокруг Mg. Каждая из “клеток” H18 или H28 образована 6-ю или 12-ю пятиугольниками и 4-мя шестиугольниками.
На основе расчётов в рамках теории функционала электронной плотности (DFT) в [7] предсказывается величина Tc около 473 К, т.е. на сто градусов выше температуры кипения воды. Правда всё это происходит при колоссальном давлении порядка 250 ГПа, что превышает современные возможности эксперимента. Однако не стоит слепо доверять DFT расчётам: и для LaH10, и для YH6 нужное давление в реальности оказалось гораздо ниже предсказанного теорией. Так что ещё есть надежда получить сверхпроводник, охлаждаемый кипящей водой.

По материалам миниобзора
J.A.Flores-Livas, R.Arita,
A prediction for “hot” superconductivity,
Physica 12, 96 (2019).

1. A.P.Drozdov et al., Nature 525, 73 (2015).

2. F.Peng, et al., Phys. Rev. Lett. 119, 107001 (2017).

3. H.Liu et al., Proc. Natl. Acad. Sci. U.S.A. 114, 6990 (2017).

4. M.Somayazulu et al., Phys. Rev. Lett. 122, 027001 (2019).

5. A.P.Drozdov et al., Nature 569, 528 (2019).

6. I.A.Troyan et al., arXiv:1908.01534.

7. Y.Sun et al., Phys. Rev. Lett. 123, 097001 (2019).
С уважением, Морозов Валерий Борисович

Ответить

Вернуться в «Дискуссионный клуб / Debating-Society»