Сверхпроводимость, БКШ, успехи, странности и непонятности

Модераторы: morozov, mike@in-russia, Editor

FENIMUS
Сообщения: 998
Зарегистрирован: Пн мар 31, 2008 11:57
Контактная информация:

Re: ВТСП. Тема не сдохла, но затихла

Номер сообщения:#91   FENIMUS »

Гидрид лантана сверхпроводимый при -23 С и давлении 150 ГПа.

https://www.dailytechinfo.org/news/1044 ... mosti.html

Аватара пользователя
morozov
Сообщения: 34551
Зарегистрирован: Вт май 17, 2005 18:44
Откуда: с Уралу
Контактная информация:

Re: Сверхпроводимость, БКШ, успехи, странности и непонятности

Номер сообщения:#92   morozov »

Magnetic-Field-Induced Superconductivity in Ultrathin Pb Films with Magnetic Impurities
Masato Niwata, Ryuichi Masutomi, Tohru Okamoto
(Submitted on 23 Oct 2017)

It is well known that external magnetic fields and magnetic moments of impurities both suppress superconductivity. Here, we demonstrate that their combined effect enhances the superconductivity of a few atomic layer thick Pb films grown on a cleaved GaAs(110) surface. A Ce-doped film, where superconductivity is totally suppressed at zero-field, actually turns superconducting when an external magnetic field is applied parallel to the conducting plane. For films with Mn adatoms, the screening of the magnetic moment by conduction electrons, i.e., the Kondo singlet formation, becomes important. We found that the degree of screening can be reduced by capping the Pb film with a Au layer, and observed the positive magnetic field dependence of the superconducting transition temperature.

Comments: 5 pages, 3 figures, submitted to PRL
Subjects: Superconductivity (cond-mat.supr-con)
Cite as: arXiv:1710.08210 [cond-mat.supr-con]
(or arXiv:1710.08210v1 [cond-mat.supr-con] for this version)

http://xxx.lanl.gov/pdf/1710.08210v1
С уважением, Морозов Валерий Борисович

Аватара пользователя
morozov
Сообщения: 34551
Зарегистрирован: Вт май 17, 2005 18:44
Откуда: с Уралу
Контактная информация:

Re: Сверхпроводимость, БКШ, успехи, странности и непонятности

Номер сообщения:#93   morozov »

Ещё один шаг к “жаропрочной” сверхпроводимости

После открытия в 1986 г. Беднорцем и Мюллером "высокотемпературной" сверхпроводимости в купратах, за которое им уже в следующем году была присуждена Нобелевская премия, не прекращались попытки всё более и более повысить температуру сверхпроводящего перехода Tc. Напомним, что сами Беднорц и Мюллер обнаружили сверхпроводимость с Tc около 30 К. За прошедшие после этого три десятилетия было открыто множество разнообразных высокотемпературных сверхпроводников, и Tc удалось поднять более, чем на сотню градусов, но “комнатнотемпературная” сверхпроводимость оставалась недостижимой. Особые надежды тут возлагались на гидриды. Основным “действующим лицом” в них является водород, для которого благодаря его малой массе характерны высокие фононные частоты, а также сильное электрон-фононное взаимодействие.

Важным успехом на этом пути было обнаружение сверхпроводимости в сероводороде с Tc = 203 К при давлении 150 ГПа [1]. При таком сверхвысоком давлении в сероводороде (H2S) возникает фаза H3S с возросшим числом атомов водорода в расчёте на формульную единицу. В 2017 г. было теоретически предсказано, что гидриды лантана и иттрия с ещё большим содержанием водорода могут обеспечить дальнейшее повышение Tc [2, 3]. Например, гидрид LaH10 имеет так называемую клатратную структуру, в которой каждый атом лантана находится в “клетке” из 10 атомов водорода. Эти предсказания были недавно подтверждены на эксперименте. Так, сразу две экспериментальные группы сообщили, что при давлениях от 120 до 185 ГПа Tc у LaH10 лежит в интервале 250-260 К [4,5], у YH6 наблюдалась Tc = 224 K при 166 ГПа [6].

Но и теоретики не стоят на месте. Так, исследователи из Jilin Univ. (Китай) [7] взялись уже за тройные соединения. Гидридов, содержащих три, а не два, химических элемента, великое множество, а их возможных структурных конфигураций ещё больше, но далеко не все они оказываются устойчивыми. Авторы работы [7] выявили во всём этом многообразии весьма перспективное соединение Li2MgH16, имеющее сложную клатратную структуру (рис. 1). Здесь литий служит в качестве источника дополнительных электронов, которые предотвращают формирование молекул H2 в такой структуре, способствуя сверхпроводимости.
Изображение
Рис. 1. Структура кристалла Li2MgH16 при высоких давлениях, включающая в себя “клетки” H18 вокруг Li и H28 - вокруг Mg. Каждая из “клеток” H18 или H28 образована 6-ю или 12-ю пятиугольниками и 4-мя шестиугольниками.
На основе расчётов в рамках теории функционала электронной плотности (DFT) в [7] предсказывается величина Tc около 473 К, т.е. на сто градусов выше температуры кипения воды. Правда всё это происходит при колоссальном давлении порядка 250 ГПа, что превышает современные возможности эксперимента. Однако не стоит слепо доверять DFT расчётам: и для LaH10, и для YH6 нужное давление в реальности оказалось гораздо ниже предсказанного теорией. Так что ещё есть надежда получить сверхпроводник, охлаждаемый кипящей водой.

По материалам миниобзора
J.A.Flores-Livas, R.Arita,
A prediction for “hot” superconductivity,
Physica 12, 96 (2019).

1. A.P.Drozdov et al., Nature 525, 73 (2015).

2. F.Peng, et al., Phys. Rev. Lett. 119, 107001 (2017).

3. H.Liu et al., Proc. Natl. Acad. Sci. U.S.A. 114, 6990 (2017).

4. M.Somayazulu et al., Phys. Rev. Lett. 122, 027001 (2019).

5. A.P.Drozdov et al., Nature 569, 528 (2019).

6. I.A.Troyan et al., arXiv:1908.01534.

7. Y.Sun et al., Phys. Rev. Lett. 123, 097001 (2019).
С уважением, Морозов Валерий Борисович

Аватара пользователя
morozov
Сообщения: 34551
Зарегистрирован: Вт май 17, 2005 18:44
Откуда: с Уралу
Контактная информация:

Re: Сверхпроводимость, БКШ, успехи, странности и непонятности

Номер сообщения:#94   morozov »

Физики получили радиоактивный высокотемпературный сверхпроводник

Изображение
Фотография образца, сжатого до давления порядка миллиона атмосфер и разогретого до температуры порядка двух тысяч кельвинов

Dmitry Semenok et al. / Materials Today, 2019

Российские физики получили новый высокотемпературный сверхпроводник — гидрид тория ThH10 — и экспериментально измерили его свойства. Полученное соединение остается стабильным при рекордно низком давлении около 0,85 миллиона атмосфер и сохраняет сверхпроводящие свойства при температуре ниже 160 кельвинов и магнитных полях слабее 45 тесла. Кроме того, ученые измерили свойства еще нескольких гидридов тория, случайно синтезированных вместе с ThH10. Статья опубликована в Materials Today, препринт работы выложен на сайте arXiv.org.

Долгое время звание самых «жаростойких» сверхпроводников держалось за купратами. Во-первых, эти соединения были первыми в истории сверхпроводниками, которые сохраняли свои свойства при температуре выше точки кипения жидкого азота. Во-вторых, рекорд купрата HgBa2Ca2Cu3O8+x, синтезированного в 1993 году и переходящего в сверхпроводящее состояние при температуре 164 кельвина, (−109 градусов Цельсия), держался более двадцати лет

Как бы то ни было, в 2015 году этот рекорд побило принципиально новое соединение — обыкновенный сероводород, сжатый до давления 1,5 миллиона атмосфер. Оказалось, что в таких экстремальных условиях сероводород переходит в сверхпроводящее состояние, которое сохраняется при нагревании до 203 кельвин (−70 градусов Цельсия). Более того, вскоре после открытия сверхпроводимости сероводорода теоретики предсказали целый ряд гидридов, которые на сравнимых давлениях превращаются в высокотемпературные сверхпроводники. К настоящему моменту ученые экспериментально подтвердили, что аналогичными свойствами обладают гидриды фосфора, иттрия, церия, урана и лантана, последний из которых превращается в сверхпроводник при температуре около 260 кельвин (−13 градусов Цельсия). К сожалению, все эти соединения остаются стабильными только при крайне высоких давлениях порядка миллиона атмосфер. Поэтому, несмотря на высокую критическую температуру, вплотную приблизившуюся к комнатной, на практике эти сверхпроводники использовать нельзя.

Группа исследователей из МИФИ, ФИАНа, а также Франции и Китая под руководством сотрудника Сколтеха и МФТИ Артема Оганова и Ивана Трояна из Института кристаллографии РАН экспериментально подтвердила высокотемпературную сверхпроводимость еще одного гидрида — гидрида тория ThH10. В прошлом году ученые уже исследовали это соединение теоретически с помощью алгоритма USPEX (Universal Structure Predictor: Evolutionary (X)Crystallography). Тогда физики обнаружили, что критическая температура этого сверхпроводника на 20 градусов не дотягивает до рекорда, однако для его создания нужно самое низкое давление среди всех известных гидридов (ThH10 «разваливается» при давлении ниже 0,8 миллиона атмосфер). Это делало гидрид тория одним из самых перспективных сверхпроводящих гидридов.

Теперь ученые экспериментально подтвердили предсказанные свойства. Чтобы синтезировать гидрид тория, физики загружали смесь тория и боразана в ячейку алмазной наковальни с вольфрамовой гаскеткой. С помощью этой наковальни исследователи сжимали образец до 1,7 миллиона атмосфер, а затем разогревали до 1800 кельвин с помощью четырех лазерных импульсов. Кристаллическую структуру полученного образца физики определяли с помощью рентгеноструктурного анализа. Затем ученые медленно понижали давление в ячейке и измеряли температуру образца, чтобы восстановить его уравнение состояния. В целом полученная кристаллическая структура и уравнение состояния совпало с теоретическими предсказаниями. Как и ожидалось, вплоть до давлений порядка 0,85 миллиона атмосфер соединение оставалось стабильным.
Изображение
Уравнение состояния для гидридов, полученных в эксперименте (точки разной формы) в сравнении с теоретическими предсказаниями (пунктирные линии)

Dmitry Semenok et al. / Materials Today, 2019
Поделиться

Чтобы измерить критическую температуру и критическое магнитное поле, ученые повторили эксперимент в немного измененной форме. Во-первых, перед сжатием исследователи зажали образец между танталовыми электродами с золотым покрытием. Во-вторых, чтобы изолировать образец от внешнего электрического поля, физики вставили в гаскетку слой из оксида магния. В остальном процедура получения гидрида мало отличалась от предыдущего опыта. После того, как образец был получен, ученые охлаждали его до тех пор, пока сопротивление не падало до нуля. Эти же измерения исследователи повторяли для ненулевого внешнего магнитного поля. К сожалению, на этот раз эксперимент довольно сильно разошелся с теорией: при нулевом внешнем магнитном поле полученная критическая температура образца составляла 160 кельвин, что было в полтора раза ниже предсказанного значения (240 кельвин). В то же время, критическое магнитное поле (45 тесла) в целом совпало с теорией (38 тесла).
Изображение
Зависимость сопротивления гидрида ThH10 от температуры

Dmitry Semenok et al. / Materials Today, 2019
Изображение
Зависимость сопротивления гидрида ThH9 от температуры

Dmitry Semenok et al. / Materials Today, 2019
Изображение
Зависимость критического магнитного поля гидридов ThH9 (кружки) и ThH10 (квадратики) от температуры

Dmitry Semenok et al. / Materials Today, 2019

Кроме того, ученые повторили те же самые измерения для других гидридов тория, случайно синтезированных в ходе эксперимента. Одно из этих соединений, гидрид ThH9, также оказалось сверхпроводником, хотя и менее перспективным: в аналогичных условиях его критическая температура составляла 146 кельвин, а критическое магнитное поле — 38 тесла. Кроме того, оно быстрее разрушалось (ThH9 «разваливался» при давлении порядка миллиона атмосфер). Для двух оставшихся соединений, гидридов ThH4 и ThH6, ученые измерили уравнение состояния и определили критическое давление, ниже которого соединения начинают разрушаться (0,86 и 1,04 миллиона атмосфер соответственно). Эти соединения сверхпроводящими свойствами не обладали.
Изображение
Структура трех новых полученных гидридов

Dmitry Semenok et al. / Materials Today, 2019

Группа Оганова работает над алгоритмом USPEX с 2004 года, за это время ученые успели предсказать много необычных веществ, образующихся при высоких давлениях. В частности, с помощью этого алгоритма химики разработали новый сверхтвердый материал, показали, что при больших давлениях окись азота приобретает сверхпроводящие свойства, а гелий образует стабильное соединение с натрием, а также обнаружили «невозможные» в классической химии формы оксида алюминия, хлорида натрия, соединений магния, кремния и кислорода. Большая часть предсказанных соединений уже получена на практике. Более полный список открытий, сделанных с помощью алгоритма USPEX, можно найти на сайте алгоритма.

Дмитрий Трунин
С уважением, Морозов Валерий Борисович

Аватара пользователя
morozov
Сообщения: 34551
Зарегистрирован: Вт май 17, 2005 18:44
Откуда: с Уралу
Контактная информация:

Re: Сверхпроводимость, БКШ, успехи, странности и непонятности

Номер сообщения:#95   morozov »

Сверхпроводник сделали источником магнитного поля
Изображение
Структура собственного магнитного поля и токов, которые возникают в сверхпроводнике при переходе вещества в особое квантовое состояние
Vadim Grinenko et al. / Nature Physics, 2020
Физики экспериментально обнаружили новое квантовое состояние сверхпроводника, в котором материал становится источником магнитного поля. Достигнутый результат важен как с точки зрения фундаментальной науки, так и для разработки сверхпроводящих устройств. Статья опубликована в журнале Nature Physics.

Сверхпроводимость — это явление, при котором электрическое сопротивление материала становится строго нулевым. Переход образца в такое состояние происходит при охлаждении ниже критической температуры — она определяется свойствами вещества. В настоящее время сверхпроводимость широко применяется в технике, однако полного теоретического описания этого явления ученые до сих пор не разработали (подробнее о сверхпроводимости и существующих объяснениях можно узнать в нашем материале).

Квантовые свойства сверхпроводника делают его идеальным диамагнетиком — материалом, которому энергетически выгодно иметь нулевое внутреннее магнитное поле. В результате сверхпроводимость и магнетизм становятся конкурентами: обычно они проявляются только по отдельности, а для совместного их возникновения нужно поддерживать специальные условия.

Ученые из шести стран под руководством Вадима Гриненко (Vadim Grinenko) из Института физики твердого тела и исследования материалов Ассоциации Лейбница в Дрездене экспериментально изучили сверхпроводимость в кристалле Ba1−xKxFe2As2. Авторы исследовали образцы с различным содержанием примесей калия и бария (в химической формуле их определяет параметр х), и следили за тем, как состав материала влияет на его сверхпроводящие и магнитные особенности. Для анализа этих свойств физики облучали кристаллы поляризованным (то есть обладающим заданной ориентацией магнитных моментов) пучком положительно заряженных мюонов и детектировали частицы, которые рождались при взаимодействии этого пучка с образцом. Такие измерения позволили исследователям понять, как именно материал воздействовал на магнитные моменты частиц, и, таким образом, определить его магнитную структуру.

В результате физики установили, что при достаточно большом относительном содержании калия (x>0.7) и низкой температуре (около 10 К) материал переходит в особое квантовое состояние, в котором начинает генерировать собственное магнитное поле. Таким образом, ученые обнаружили ранее неизвестный механизм сосуществования магнетизма и сверхпроводимости. Это открытие порождает новое направление для экспериментальных и теоретических исследований и в будущем может найти применение при разработке сверхпроводящих устройств. Кроме того, авторы выявили связь между условиями, которые приводили к возникновению обнаруженного состояния, и условиями Лифшиц-перехода — известного квантового превращения, меняющего энергетическую конфигурацию электронов. Последнее облегчит поиски подобных свойств у других кристаллов.

Ранее мы писали о том, как ученые предсказали возникновение сверхпроводимости при температуре 200 градусов Цельсия и как мюоны помогли измерить перепад потенциалов грозового облака величиной в миллиард вольт.

Николай Мартыненко
С уважением, Морозов Валерий Борисович

Аватара пользователя
morozov
Сообщения: 34551
Зарегистрирован: Вт май 17, 2005 18:44
Откуда: с Уралу
Контактная информация:

Re: Сверхпроводимость, БКШ, успехи, странности и непонятности

Номер сообщения:#96   morozov »

Впервые создан магнитный сверхпроводник
Никита Шевцев, 28 мая 2020
Изображение
Команда исследователей из трех стран синтезировала материал, который проявляет сверхпроводящие свойства и при этом способен создавать магнитное поле. Это оказалось возможно благодаря нарушению симметрии обращения времени. Статья об открытии опубликована в журнале Nature Physics.

Некоторые физические системы не симметричны по времени, и в координатах «обратного времени» их свойства могут изменяться. Пример таких систем — сверхпроводники в особом квантовом состоянии. Ниже определенной температуры они начинают проводить ток без сопротивления и при этом становятся идеальными диамагнетиками — то есть вытесняются из внешнего магнитного поля. Благодаря этой особенности магнит способен «летать» над сверхпроводником.

Таким образом, магнетизм и сверхпроводимость фактически считались взаимоисключающими свойствами. Магнетизм возникает в структуре из-за присутствия в материале атомов с неспаренными электронами. Но для возникновения сверхпроводимости электроны спариваются, образуя куперовские пары, которые без энергетических потерь перемещаются по кристаллической решетке. При этом магнитные центры препятствуют образованию электронных пар, поэтому разделить электроны «по обязанностям» не представляется возможным. Одновременно эти два свойства могут возникать только в атомных структурах, в которых возможно спонтанное обращение симметрии по времени.

Исследователи из Дрезденского технического университета, Института физики твердого тела и исследования материалов Ассоциации Лейбница, Национального института передовой промышленной науки и технологии (Токио, Япония) и химического факультета МГУ создали и исследовали такую структуру сверхпроводников состава Ba1-xKxFe2As2 с нарушенной симметрией относительно обращения времени. Исследователи выяснили, что при x около 0,7 и температуре в 10 кельвин (-263 °C) у материала возникает такое нарушение симметрии. В этом состоянии соединение создает магнитное поле, одновременно проявляя сверхпроводимость.

Авторы изучили соединения этого состава с различным x, для чего синтезировали их монокристаллы в виде тонких пластин с размерами до одного см. Затем ученые анализировали, как материал будет взаимодействовать с пучком мюонов. По изменению магнитного момента пучка частиц ученые определяли магнитную структуру самого кристалла. «Полученные результаты указывают на то, что ряд сверхпроводников при определенных составах показывает малоизученную форму магнетизма. Удивительно, что этот магнетизм порождается сверхпроводимостью, и это делает данное явление особенно интересным. Дальнейшее исследование этого явления открывает новые возможности для создания сверхпроводящих устройств», — объяснил один из ключевых участников исследования, сотрудник Технического университета Дрездена Вадим Гриненко.
С уважением, Морозов Валерий Борисович

Аватара пользователя
morozov
Сообщения: 34551
Зарегистрирован: Вт май 17, 2005 18:44
Откуда: с Уралу
Контактная информация:

Re: Сверхпроводимость, БКШ, успехи, странности и непонятности

Номер сообщения:#97   morozov »

Ученые сделали еще один шаг к сверхпроводимости при комнатной температуре
Далее

Анастасия Никифорова Новостной редактор

Возможность достижения сверхпроводимости при комнатной температуре сделала небольшой шаг вперед благодаря недавнему открытию команды физиков и материаловедов из Университета Penn State. Удивительным открытием стало наложение двухмерного материала под названием сульфид молибдена на другой материал, карбид молибдена. Карбид молибдена является известным сверхпроводником — электроны могут протекать через материал без какого-либо сопротивления. Даже самые лучшие металлы, такие как серебро или медь, теряют энергию из-за тепла. Эта потеря делает передачу электроэнергии на большие расстояния более дорогостоящей. Решение этой проблемы изучено в исследовании, опубликованном в журнале Proceedings of the National Academy of Sciences (PNAS).

Сверхпроводимость — свойство некоторых материалов обладать строго нулевым электрическим сопротивлением при достижении ими температуры ниже определенного значения. Известны несколько сотен соединений, чистых элементов, сплавов и керамик, переходящих в сверхпроводящее состояние.

Это квантовое явление возникает при очень низких температурах, близких к абсолютному нулю или 0 Кельвинам (-273.15 °C), в то время как альфа-фаза карбида молибдена является сверхпроводящей при 4 Кельвинах (-269.15 °C), заявил Маурисио Терронес, автор исследования.

При наслоении метастабильных фаз карбида молибдена на сульфид молибдена сверхпроводимость возникает уже при 6 Кельвинах. Хотя это само по себе не примечательно — другие материалы являются сверхпроводящими при температурах до 150 Кельвинов — это явление стало неожиданным. Оно предвещает новый метод увеличения сверхпроводимости при более высоких температурах в других сверхпроводящих материалах.
Изображение
Слои карбида молибдена и сульфида молибдена обеспечивают сверхпроводимость при более высоких температурах на 50%. Предоставлено: Элизабет Флорес-Гомес Мюррей/Penn State

Команда ученых использовала методы моделирования, чтобы понять, как эффект произошел экспериментально.

Расчеты с использованием квантовой механики помогли в интерпретации экспериментальных измерений для определения структуры карбида молибдена и сульфида молибдена. Эта работа является хорошим примером того, как синтез, характеристика и моделирование материалов могут объединиться, чтобы способствовать открытию новых систем материалов с уникальными свойствами.

По словам ученых, это фундаментальное открытие, хотя «никто не верил, что это сработает». Явление, которое наблюдают ученые, ранее не было замечено.

Команда исследователей продолжит экспериментировать со сверхпроводящими материалами. Их цель — когда-нибудь найти комбинации материалов, которые могут переносить энергию с нулевым сопротивлением.
С уважением, Морозов Валерий Борисович

Аватара пользователя
morozov
Сообщения: 34551
Зарегистрирован: Вт май 17, 2005 18:44
Откуда: с Уралу
Контактная информация:

Re: Сверхпроводимость, БКШ, успехи, странности и непонятности

Номер сообщения:#98   morozov »

Ученые сделали еще один шаг к сверхпроводимости при комнатной температуре

Анастасия Никифорова Новостной редактор

Возможность достижения сверхпроводимости при комнатной температуре сделала небольшой шаг вперед благодаря недавнему открытию команды физиков и материаловедов из Университета Penn State. Удивительным открытием стало наложение двухмерного материала под названием сульфид молибдена на другой материал, карбид молибдена. Карбид молибдена является известным сверхпроводником — электроны могут протекать через материал без какого-либо сопротивления. Даже самые лучшие металлы, такие как серебро или медь, теряют энергию из-за тепла. Эта потеря делает передачу электроэнергии на большие расстояния более дорогостоящей. Решение этой проблемы изучено в исследовании, опубликованном в журнале Proceedings of the National Academy of Sciences (PNAS).

Сверхпроводимость — свойство некоторых материалов обладать строго нулевым электрическим сопротивлением при достижении ими температуры ниже определенного значения. Известны несколько сотен соединений, чистых элементов, сплавов и керамик, переходящих в сверхпроводящее состояние.

Это квантовое явление возникает при очень низких температурах, близких к абсолютному нулю или 0 Кельвинам (-273.15 °C), в то время как альфа-фаза карбида молибдена является сверхпроводящей при 4 Кельвинах (-269.15 °C), заявил Маурисио Терронес, автор исследования.

При наслоении метастабильных фаз карбида молибдена на сульфид молибдена сверхпроводимость возникает уже при 6 Кельвинах. Хотя это само по себе не примечательно — другие материалы являются сверхпроводящими при температурах до 150 Кельвинов — это явление стало неожиданным. Оно предвещает новый метод увеличения сверхпроводимости при более высоких температурах в других сверхпроводящих материалах.
Слои карбида молибдена и сульфида молибдена обеспечивают сверхпроводимость при более высоких температурах на 50%. Предоставлено: Элизабет Флорес-Гомес Мюррей/Penn State

Команда ученых использовала методы моделирования, чтобы понять, как эффект произошел экспериментально.

Расчеты с использованием квантовой механики помогли в интерпретации экспериментальных измерений для определения структуры карбида молибдена и сульфида молибдена. Эта работа является хорошим примером того, как синтез, характеристика и моделирование материалов могут объединиться, чтобы способствовать открытию новых систем материалов с уникальными свойствами.
Изображение
По словам ученых, это фундаментальное открытие, хотя «никто не верил, что это сработает». Явление, которое наблюдают ученые, ранее не было замечено.

Команда исследователей продолжит экспериментировать со сверхпроводящими материалами. Их цель — когда-нибудь найти комбинации материалов, которые могут переносить энергию с нулевым сопротивлением.
С уважением, Морозов Валерий Борисович

Ответить

Вернуться в «Дискуссионный клуб / Debating-Society»